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Abstract
The paper deals with the problem of identifying the internal dependences and
similarities among a large number of random processes. Linear models are
considered to describe the relations among the time series, and the energy
associated with the corresponding modeling error is the criterion adopted to
quantify their similarities. Such an approach is interpreted in terms of graph
theory suggesting a natural way to group processes together when one provides
the best model to explain the others. Moreover, the clustering technique
introduced in this paper will turn out to be the dynamical generalization of
other multivariate procedures described in the literature.

PACS numbers: 02.50.Sk, 02.10.Ox

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Deriving information from data is a crucial problem in science, and it has been widely
investigated in the literature. A large variety of contributions has been developed in many
fields, such as engineering, physics, biology and economy, providing several methods and
procedures which accomplish different objectives. In particular, in the study of complex
systems, the comprehension of the internal connections, which define the hierarchical structure
of the process, turns out to play a key role in fully understanding its dynamics [1]. Just to cite
possible and very different applications, in [2] the modular organization of metabolic processes
of cells has been detected and studied, in [3] models for internal interactions in glassy materials
have been suggested, and in [4] the identification of a hierarchical structure of stocks in the
financial market is proposed in order to check how diversified a portfolio is. Techniques
to distinguish topological interconnections in complex systems are especially useful in the
presence of a multivariate data set, because this kind of sample is usually the result of a process
intrinsically organized into modular subsystems [5]. Therefore, the recognition of the system
structure is a critical step for the definition of a suitable model. In particular, a clusterization
problem can be solved to divide the source data set into interconnected homogeneous groups
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describing different subsystems [6]. This approach deals with the search for similarities and
relations inside the original samples, trying to catch their internal connections and providing
a schematic representation of hierarchies. Recently, new clustering techniques based on a
correlation matrix have been proposed for the analysis of data sets made up by a large variety
of time series [7, 8]. However, these procedures are able to detect only the ‘static’ relations
among the samples, since they capture the similarities just at the current time [9–12].

In this paper, we propose a clustering technique based on a modeling approach. Indeed,
since the original time series are dynamically interconnected, we intend to derive their
hierarchy in terms of mathematical laws, which provide a structured description of the
internal mechanism. To this end, we settle the clustering problem into the framework of
the system identification theory [13, 14]. Hence, exploiting the modeling errors to quantify
the similarities among the original signals, we realize a clustering technique, defined as the
solution of a minimization problem. Therefore, a modeling interpretation of the procedures
based on the correlation matrix is first introduced. In particular, they turn out to be a non-
optimal choice with respect to the modeling error. Then, the approach is developed taking into
account dynamic dependences among the time series. In this respect, the identification step
is realized introducing the hypothesis of linear dynamic connections, represented by single
input–single output (SISO) local models. Moreover, since the clusters are internally organized
by means of transfer functions, the final model can be interpreted as a dynamical network of
interconnected systems and its structure as the related topology.

Notation.

The symbol
.= denotes a definition

E[·]: mean operator;
RXY (τ)

.= E[X(t)Y (t + τ)]: cross-covariance function of stationary processes;
for the sake of simplicity, RXY

.= RXY (0);
RX(τ)

.= RXX(τ): autocovariance;
ρXY

.= RXY√
RXRY

: correlation index;
Z(·): zeta-transform of a signal;
�XY (z)

.= Z(RXY (τ )): cross-power spectral density;
�X(z)

.= �XX(z): power spectral density;
with abuse of notation,�X(ω) = �X(eiω);
�·� and �·�: ceiling and floor function respectively;
(·)∗: complex conjugate.

2. A modeling perspective

In [9], a procedure to obtain a hierarchical structure of a set of time series is proposed. N
realizations of N random processes Xi are considered. First, an estimation of the correlation
index ρij related to every couple (Xi,Xj ) is computed, along with the associated distances [4]

dij
.= √

2(1 − ρij ). (1)

Then, a graph is defined where every node represents a random process and the arc linking two
nodes is weighted according to (1). Eventually, the minimum spanning tree (MST) is extracted
by the graph. This procedure has been successfully exploited to provide a quantitative and
topological analysis of time series, especially in the economic field (see [4, 8, 11]). It is
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worth considering that such a technique can be interpreted in terms of a modeling procedure.
Consider the problem of describing a process Xj by scaling another process Xi with a suitable
real constant αji . Choosing

αji =
√√√√E

[
X2

j

]
E

[
X2

i

] =
√

RXj

RXi

, (2)

we find that

E[(Xj − αjiXi)
2] = E

[
X2

j

]
d2

ij .

Hence, the distance (1) can be interpreted as the root of the mean square error, properly
normalized by the variance of Xj , when the simple gain (2) is used. Such a normalization
is necessary since we are interested into capturing similar trends between the processes
regardless of their amplitudes. However, we remark that the choice of (2) can be considered
arbitrary. Conversely, we would like to evaluate the closeness of two processes according to
the information which can be inferred about one of them assuming to know the other [15].
From this point of view, (2) does not satisfy any optimality criterion. Indeed, considering two
anticorrelated time series (ρij = −1) it is possible to perfectly reconstruct one from the other.
Thus the information in the two signals is the same, while their distance (1) makes them the
farthest. Let us define

eji = Xj − αjiXi; (3)

then, it is possible to adopt the least squares criterion in order to evaluate the ‘best’ constant
αji . In this case, it is immediate to prove that the optimal choice is given by

α̂j i = RXj Xi

RXi

(4)

and the relative quadratic error amounts to

E
[
e2
ji

] = RXj
−

R2
Xj Xi

RXi

(5)

[14]. In order to obtain a dimensionless quantity, we can normalize (5) with respect to the
power of Xj and define the binary function

d(Xi,Xj )
.=

√
E

[
e2
ji

]
RXj

=
√

1 − ρ2
XiXj

. (6)

It is worth observing that (6) is a distance exactly as (1).

Proposition 1. The function d(·, ·), as defined in (6), is a metric.

Proof. See the appendix. �
In [9], the MST is extracted from the graph, according to the weights (1). This is equivalent

to define a hierarchical structure of the time series relying on the adoption of linear gain models
(2) between the processes and considering the relative modeling error as a distance function.

The choice of a MST can be justified from a modeling point of view as an attempt to
define a connected network which minimizes the modeling error on every node.

Substituting (1) with (6), we apply the same topological strategy, but we structure the data
according to the best gain model in the sense of the least squares.

Remark 2. From a system theory point of view, it can be said that both the approaches
are ‘static’. Indeed, the models do not have a state; thus they do not have any dynamics.
They simply capture a direct relation between two process samples at the same time instant.
However, the optimal approach we have followed can be extended to a more general case.
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3. Dynamic modeling using Wiener filters

We consider a model to be ‘static’ (or ‘memoryless’) when, at every time instant t, its output
is a function of its input at the very same time instant. Conversely, the output of a ‘dynamic’
model also depends on the input values it receives at instants different from t. In this general
sense, we say that it has a ‘memory’ (or, equivalently, a ‘state’). Constant gains as (2) or (4) are
linear static models offering an extremely simple proportional relation between two processes.
We propose a dynamic extension of the linear approach just described in the previous section
based on the well-known Wiener filter.

Given two stochastic processes Xi,Xj and a time discrete transfer function Wji(z) (that
is, the zeta-transform of its impulse response), let us consider the quadratic cost

E[(εQ)2], (7)

where

εQ
.= Q(z)(Xj − Wji(z)Xi), (8)

Q(z) being an arbitrary stable and causally invertible time-discrete transfer function weighting
the error

eji = Xj − Wji(z)Xi. (9)

Then, the problem of evaluating the transfer function Ŵ (z) such that the quadratic cost (7) is
minimized is well known in the scientific literature and its solution is referred to as the Wiener
filter [14].

Proposition 3 (Wiener filter). The Wiener filter modeling Xj by Xi is the linear stable filter
Ŵji minimizing the filtered quantity (7). Its expression is given by

Ŵji(z) = �XiXj
(z)

�Xi
(z)

, (10)

and it does not depend upon Q(z). Moreover, the minimized cost is equal to

min E[(Q(z)ε)2] = 1

2π

∫ π

−π

|Q(ω)|2(�Xj
(ω) − |�Xj Xi

(ω)|2�−1
Xi

(ω)
)

dω.

Proof. See, for example, [14] �

Observe that the stable implementation of the Wiener filter Ŵji(z) is non-causal, in
general. That is, its output Ŵji(z)Xi depends on both past and future values of the input
process Xi . The Wiener filter, in this formulation, is interesting from an information and
modeling point of view, but, of course, we would rather need a causal filter, if we were to
make predictions (aim which is beyond the scope of this paper).

Since the weighting function Q(z) does not affect the Wiener filter, but only the energy of
the filtered error, we choose Q(z) equal to Fj (z), the inverse of the spectral factor of �Xj

(z),
that is

�Xj
(z) = F−1

j (z)
(
F−1

j (z)
)∗

, (11)

with Fj (z) being stable and causally invertible [16]. In such a case, the minimum cost assumes
the value

min E
[
ε2
Fj

] = 1

2π

∫ π

−π

(
1 − |�Xj Xi

(ω)|2
�Xi

(ω)�Xj
(ω)

)
dω. (12)
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This specific choice of Q(z) makes the cost depend explicitly on the coherence function of
the two processes

CXiXj
(ω)

.= |�Xj Xi
(ω)|2

�Xi
(ω)�Xj

(ω)
, (13)

which turns to be non-negative and symmetric with respect to ω. It is also well known that
the cross-spectral density satisfies the Schwartz inequality. Hence, the coherence function
is limited between 0 and 1. The choice Q(z) = Fj (z) can be now understood as motivated
by the necessity to achieve a dimensionless cost function not depending on the power of the
signals as in (12).

The cost obtained by the minimization of the error εFj
using the Wiener filter as before

allows us to define the binary function

d(Xi,Xj )
.=

[
1

2π

∫ π

−π

(
1 − CXiXj

(ω)
)

dω

]1/2

. (14)

Proposition 4. The function d(·, ·), as defined in (14), is a metric.

Proof. See the appendix. �

The metric (14) can now be used to derive a MST and obtain a hierarchical structure of
the processes Xi . Such an approach generalizes the results in [9] to the linear dynamic case.
We remark that the choice of a tree to describe the topology of the data is a very reasonable
but arbitrary solution. In order to capture influences and similarities among the processes Xj ,
we intend to propose a more flexible modeling technique to extract topological information
from the data. Every Xj can be described as the output of a linear SISO dynamical system,
whose input is one of the other N − 1 processes. Thus, for every time series Xj it is natural
to choose the model Ŵjm(j)(z) with input Xm(j), such that it provides the best description
according to (12), dropping the others. The application of this procedure results in a set of
N interconnected systems, each of them minimizing mini E[(Qjeji)

2]. Since the choice of
every model Ŵjm(j)(z) does not affect the selection of the others, the overall cost function

min
m(·)

∑
j

E[(Qjejm(j))
2] (15)

turns out to be minimized, as well. The following algorithm performs such a task.

Algorithm (Clusterization Algorithm).

1. initialize the set A = ∅
2. for every process Xj(j = 1, . . . , N)

2a. for every i = 1, . . . , N, i �= j

compute the distance dij
.= d(Xi,Xj );

2b. define the set M(j)
.= {k|dkj = mini dij } with i �= j

2c. choose, if possible, m(j) ∈ M(j) such that (m(j), j) /∈ A

2d. choose the model
Xj = Ŵjm(j)(z)Xm(j) + ejm(j)

2e. add the couple (j,m(j)) to A.

The resulting network of processes has an appealing graphical interpretation. Indeed, its
topological structure can be seen as a weighted graph where every process Xj is a node, the
arc linking Xi to Xj represents the Wiener filter describing the ‘output’ Xj in terms of the
‘input’ Xi , and the weights on the arcs are given by (14). Because of the symmetry property
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Figure 1. The figures illustrates all the possible connections between two nodes (dashed lines) in
a nine-node network. The solid lines depict a forest as it were the result after the application of the
algorithm.

of (14), there is no actual need to consider an oriented graph. Hence, the presence of both
the arcs (i, j) and (j, i) boils down into just a single link. Following this interpretation, the
algorithm determines a graph designed to keep, for every node, the incident arc with the least
cost (see figure 1).

Proposition 5. The graph resulting from the proposed algorithm has the following properties:

• on every node, there is at least an incident arc;
• if there is a cycle, then all the arcs of the cycle have the same weight;
• there are at least �N/2� and at most N arcs.

Proof. See the appendix. �

The presence of cycles in the resulting graph is a pathological situation as stressed in the
following remark.

Remark 6. A necessary condition of existence for a cycle is the presence of more than two
nodes with common multiple minimum cost arcs. Therefore, a mild sufficient condition in
order to avoid cycles in the graph is to assume that every node has a unique minimum cost
arc. If the costs of the arcs are obtained by estimation from real data, the probability to obtain
a cycle is zero almost everywhere [17]. Consequently, in such a case the expected topology
of the graph is a forest (a graph with no cycles).

Remark 7. If there are no cycles, the graph resulting from the algorithm is a subgraph of the
MST.

Remark 8. In general, nothing can be said about the connectivity. Therefore, the modeling
procedure depicted by the algorithm provides a clusterization of the original processes Xi

which, for every node, minimize the cost (14) according to the criterion of linear dynamic
dependence. It is possible to modify the procedure in order to suitably satisfy other constraints
about the graph topology. For instance, if we deal with a connectivity condition the algorithm
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Figure 2. The figure illustrates the topology of the ten-node network analyzed in section 4. Each
node represents a process Xj , while the arcs describe the connections among them, according to
the linear SISO model (16). For the data generation, we have considered only transfer functions
of at most the second order. The noises Nj have been assumed to provide half the power of the
affected processes. The samples have been collected over 1000 time steps.

can be easily replaced by a MST search. Therefore, the approach followed in [9] to obtain
topological information from the time series results in a constrained optimization of (15).

Remark 9. The modelization we have derived makes use of non-causal Wiener filters; thus it
can be useful to detect linear dependences of any sort between the processes Xi .

Unfortunately, the adoption of non-causal filters cannot be employed to make predictions.

4. Numerical example

It is intended to show, by means of numerical examples, the main advantages of the technique
described in the previous sections. In particular, we want to evaluate the performance of our
procedure when identifying an unknown topology. First, we realized several simulations of
ten randomly generated processes Xj , designed as follows. They have been hierarchically
structured in a tree topology, where the interconnections were linear, randomly generated, at
most second-order transfer functions Wji with external noises Nj :

Xj = WjiXi + Nj . (16)

Since all simulations present strong analogies, we are showing just one of them, whose
topology is depicted in figure 2. Note that the simulated network involves linear dependences
only, so it satisfies the theoretical conditions of the approach based on Wiener filters introduced
in the previous sections. On every node Xj (but the root), the deterministic component
Wji(z)Xi and the stochastic disturbance are equal in power. A simulation horizon of 1000
steps has been taken into account where the noise components have been generated by
pseudorandom number algorithms. The hypothesis of uncorrelated disturbances has been
numerically checked, providing a marginally satisfactory result. In order to make a meaningful
comparison, we have also considered the technique described in [4], which has given useful
insights into the analysis of a multivariate data set in econometrics and in biology. Applying
it, we found the distance matrix reported in table 1 and the corresponding MST depicted in
figure 3, where every node occupies the same position. We note that the topology is not
correctly identified by such a procedure, even though similarities can be identified. On the
other hand, the application of the clusterization algorithm introduced by us provides the
distances of table 2 with the graph of figure 4. We stress that the choice of an original
tree topology is due to the comparison with the widely used technique introduced in [4].
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Figure 3. The MST obtained using the correlation-based distance of table 1. Every node is placed
in the same position of figure 2 for a direct visual comparison. The actual topology has not been
correctly identified, though some analogies with the right structure can be observed. The procedure
described in [4] reveals strong limitation in capturing the nature of the network even when the
actual topology is exactly a tree.

Figure 4. The figure illustrates the MST obtained by using the coherence-based distance
(solid+dashed lines). The nodes are left in the same positions as in the previous figures. Notably, it
is same as actual topology. The application of the proposed clustering algorithm provides a forest
(solid lines): each cluster is virtually connected to the others by the arcs of the MST, which have
not been chosen by the algorithm (dashed lines). The use of different colors highlights the modular
structure resulting from the clusterization. It is worth noting that the actually topology is exactly
identified under the connectivity constraint.

Table 1. Correlation-based distance matrix.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0 0.9946 1.3763 1.0624 1.1027 1.2393 1.2719 1.3747 0.7306 1.4589
X2 0.9946 3.3e-8 1.1130 1.0674 0.7723 1.0082 1.2004 1.1269 1.1132 1.4575
X3 1.3763 1.1130 0 1.1487 1.2217 1.2877 1.1645 0.9 965 1.3507 1.4124
X4 1.0624 1.0674 1.1487 4.2e-8 1.1727 1.1805 0.9296 1.1455 1.1491 1.3433
X5 1.1027 0.7723 1.2217 1.1727 3.9e-8 1.1491 1.2418 1.2353 1.1898 1.4587
X6 1.2393 1.0082 1.2877 1.1805 1.1491 4.9e-8 1.2123 1.2984 1.2858 1.3227
X7 1.2719 1.2004 1.1645 0.9296 1.2418 1.2123 0 1.1815 1.3003 1.3334
X8 1.3747 1.1269 0.9965 1.1455 1.2353 1.2984 1.1815 0 1.3542 1.4389
X9 0.7306 1.1132 1.3507 1.1491 1.1898 1.2858 1.3003 1.3542 7.3e-8 1.4450
X10 1.4589 1.4575 1.4124 1.3433 1.4587 1.3227 1.3334 1.4389 1.4450 0

Moreover, it is worth noting that the link structure is perfectly reconstructed by our procedure,
if the connectivity constraint is imposed, and that only real connections are chosen by the
proposed clustering algorithm.

Further, we repeated the same procedure with a larger number of processes (N = 50).
Again, the results showed many similarities; so we are presenting just one case with the

8
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Figure 5. The 50-node network of section 4. The figure provides the actual topology. The example
has been designed according to the same assumptions of the network of figure 2.

Table 2. Coherence-based distance matrix.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0 0.7299 0.6675 0.7351 0.8316 0.8542 0.8297 0.7055 0.6549 0.8298
X2 0.7299 0 0.8065 0.8353 0.6934 0.7358 0.8786 0.8483 0.8299 0.8717
X3 0.6675 0.8065 0 0.8216 0.8744 0.8807 0.8750 0.8262 0.7841 0.8821
X4 0.7351 0.8353 0.8216 0 0.8662 0.8722 0.7404 0.8502 0.8198 0.7039
X5 0.8316 0.6934 0.8744 0.8662 0 0.8540 0.8919 0.8995 0.8730 0.8846
X6 0.8542 0.7358 0.8807 0.8722 0.8540 0 0.8934 0.8984 0.8796 0.8944
X7 0.8297 0.8786 0.8750 0.7404 0.8919 0.8934 0 0.8838 0.8694 0.8346
X8 0.7055 0.8483 0.8262 0.8502 0.8995 0.8984 0.8838 0 0.8167 0.8908
X9 0.6549 0.8299 0.7841 0.8198 0.8730 0.8796 0.8694 0.8167 0 0.8715
X10 0.8298 0.8717 0.8821 0.7039 0.8846 0.8944 0.8346 0.8908 0.8715 0

topology depicted in figure 5. Analogously, the correlation-based approach of [4] provides
the MST of figure 6 while our coherence-based algorithm identifies the graph of figure 7.
However, it is worth noting that our technique detects links actually present in the topology
with no mistakes and that the original topology is correctly reconstructed under the connectivity
constraint.

These simple examples highlight a better capability of our technique into capturing
relationships and dependences among time series. In particular, remarkable improvements
should be expected in the presence of strong dynamical interconnections and significant delays
in the actual network. Indeed, the correlation approach is not able to detect similarities among
time series when time shift delays are present. Conversely, the coherence distance may capture
them since it relies on a dynamical modeling of the processes.

9
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Figure 6. The figure illustrates the MST obtained by means of the correlation-based distance. The
nodes are settled in the same positions of the original tree in figure 5 for a direct visual comparison.
Though the original topology is a tree, a quite significant number of connections have not been
correctly reconstructed. A limited number of similarities with the actual network can be observed.

Figure 7. The figure shows the MST (solid+dashed lines) obtained by applying the coherence-
based distance (16) to the processes produced by the network depicted in figure 5, assuming the
node positions unchanged. Notably, the original structure has been correctly reconstructed. The
forest resulting from the application of the clusterization algorithm is also reported (solid lines).
The clusters are connected by the remaining arcs of the MST (dashed lines).

10
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5. Conclusions

In this paper we have introduced a novel approach to the clusterization problem. In particular,
the similarities among the time series of a multivariate data set have been analyzed from
the modeling point of view and their interconnections have been interpreted as functional
dependences. Hence, linear SISO transfer functions have been proposed to describe the
relations among the processes and the associated modeling errors have been exploited to
quantify their similarities. In turn, such a distance introduces a natural way of grouping the
time series, since it is very reasonable to place two processes in the same subset, when one
provides the best model to explain the other.

Notably, the proposed distance can be directly computed exploiting the coherence
function, requiring no identification step. In this respect, for example, in [18] the original time
series are reconstructed by means of a fixed nonlinear differential equation system, obtaining
the parametric sets which best fit them. The corresponding points in the parameter space are
then used for the clusterization. It is worth noting that such a procedure is not suitable to
group dynamically linked time series, which instead is an advantage of our technique.

Further, our novel approach has been compared to the clustering technique proposed in [4]
and formulated as an extension of the multivariate analysis of [8]. In particular, our coherence-
based distance turns out to be the dynamical generalization of the correlation-based metric in
[9]. Therefore, it provides an improved capability in capturing the internal topology among the
processes, especially when their functional dependences turn out to be dynamical laws. Some
numerical examples have finally been presented to illustrate the expected improvements, due
to our distance, and to provide a validation for our clustering algorithm.

Appendix

Proof of proposition 1. Note that we consider two processes to be equivalent also when
they are anticorrelated since they are identical from an information point of view. Thus, the
only non-trivial property to show is the triangle inequality. Consider the following relations
involving the optimal gains α̂31, α̂32, α̂21, defined as in (4):

X3 = α̂31X1 + e31

X3 = α̂32X2 + e32

X2 = α̂21X1 + e21.

Since α̂31 is the best constant model, we have that it must perform better than any other
constant model (in particular α̂32α̂21):

RX3 − R2
X3X1

RX1

� E[(e32 + α̂32e21)
2] �

(√
E[e2

32] + |α̂32|
√

E[e21)2]
)2

.

Normalize with respect to RX3 and consider the square root

√
1 − ρ2

X1X3
�

√
1

RX3

(√
E

[
e2

32

]
+ |α̂32|

√
E

[
e2

21

])2

�

√
E

[
e2

32

]
RX3

+ |ρX2X3 |
√

E
[
e2

21

]
RX2

.

Since |ρX2X3 | � 1, we have the assertion. �
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Proof of proposition 4. The only non-trivial property to prove is the triangle inequality. Let
Ŵji(z) be the Wiener filter between Xi and Xj computed according to (10) and eji the relative
error. The following relations hold: �

X3 = Ŵ31(z)X1 + e31

X3 = Ŵ32(z)X2 + e32

X2 = Ŵ21(z)X1 + e21.

Since Ŵ31(z) is the Wiener filter between the two processes X1 and X3, it performs better at
any frequency than any other linear filter, such as Ŵ32(z)Ŵ21(z). So we have

�e31(ω) � �e32(ω) + |Ŵ32(ω)|2�e21(ω)

+ �e32e21(ω)Ŵ ∗
32(ω) + Ŵ32(ω)�e21e32(ω)

� (
√

�e32(ω) + |Ŵ32(ω)|√�e21(ω))2 ∀ω ∈ R.

For the sake of simplicity, we neglect to explicitly write the argument ω in the following
passages. Normalizing with respect to �X3 , we find

�e31

�X3

� 1

�X3

(√
�e32 + |Ŵ32|

√
�e21

)2

and considering the 2-norm properties(∫ π

−π

�e31

�X3

dω

) 1
2

�
(∫ π

−π

�e32

�X3

dω

) 1
2

+

(∫ π

−π

|�X3X2 |2
�X3�X2

�e21

�X2

dω

) 1
2

,

where we have substituted the expression of Ŵ32. Finally, considering that

0 � |�X3X2 |2
�X3�X2

� 1,

we find

d(X1, X3) � d(X1, X2) + d(X2, X3).

Proof of proposition 5. The proof of the first property is straightforward because for every
node, the algorithm considers an incident arc. Let us suppose that there is a cycle and k be the
number of nodes n1, . . . , nk and arcs a1, . . . , ak of such a cycle. Every arc a1, . . . , ak has been
chosen at step 2e when the algorithm was taking into account one of the nodes n1, . . . , nk .
Conversely, every node n1, . . . , nk is also responsible for one of the arcs a1, . . . , ak . Indeed,
if a node ni causes the selection of an arc â /∈ {a1, . . . , ak}, then we are left with k arcs which
cannot all be chosen by k − 1 nodes.

Let us consider the node n1. Without loss of generality, assume that it is responsible for
the selection of the arc a1 with weight d1 linking it to the node n2. According to the previous
results, n2 cannot be responsible for the choice of a1. Let a2 be the arc selected because of n2

with weight d2 and connecting it to n3. Observe that necessarily d2 � d1. We may repeat this
process till the node nk−1. Hence, we obtain that every node ni is connected to ni+1 by the arc
ai whose cost is di � di−1, for i = 2, . . . , k − 1. Finally consider nk . It must be responsible
for ak which has to connect it to n1 with cost dk � dk−1. Since dk is incident to n1, it holds that
d1 � dk Therefore, d1 � dk � dk−1 · · · � d2 � d1 and we have the assertion of the second
property.

About the third property, the upper bound N follows from the consideration that every
node causes the choice of at most a new arc. In step 2c of the algorithm, it may happen at
most �N/2� times that we are forced to pick up an arc which is already in A. So we have at
least N − �N/2� = �N/2� arcs. �
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